Ro	oll No	Total Pages : 04
		BT-4/M-20 34096
		OPERATING SYSTEMS
		CSE-210N
Tiı	me : 7	Three Hours] [Maximum Marks: 75
No	te :	Attempt Five questions in all, selecting at least one
		question from each Unit. All questions carry equal
		marks.
		Unit I
1.	(a)	Justify the need of I/O structure and storage
	()	hierarchy in a computer system. 5
	(b)	Discuss the roles of using systems calls and system
		programs for the effective implementation of
		operating systems services modules. 5
	(c)	
		protection by the operating systems? 5
2.	(a)	Briefly discuss the following: 7.5
		(i) Real time computing
		(ii) Batch Processing
	(b)	What are the various system devices that are ordered
		by the operating systems? Comment on the need

7.5

of these system services.

Unit II

3.	(a)	Expla	ain the following CPU scheduling algori	lling algorithms:				
		(i)	SJF	2.5				
		(ii)	FCFS	2.5				
		(iii)	Round Robin.	2.5				
	(b) Write and explain the Dining Philosophers Pro							
		Also,	provide the solution for the problem	using				

4. (a) Explicate the classical problem of synchronization. Discuss the role of hardware and software support

which are involved in synchronization.

semaphores.

(b) How non-preemptive scheduling works? Briefly explain.

7.5

(c) Draw and explain the flow of process management activity that takes place during co-operating processes and inter process communication. 5

Unit III

- **5.** (a) What is a page-fault? List all the steps of how a page-fault is serviced by the operating system? **7.5**
 - (b) Define paging and fragmentation. The following is the sequence of page requests: 1, 2, 5, 3, 4, 3, 2, 5, 4, 2, 1, 1. Assume that there are three frames. Now, how many page faults will occur if MFU and LRU algorithms are used to replace pages? 7.5

- 6. (a) Explain the Dual-mode operation of an operating system. Explain contiguous memory allocation and linked allocation methods with the help of suitable working diagram.8
 - (b) Explain and justify the roles of the following:
 - (i) Paged segmentation 3.5
 - (ii) Recovery from deadlock 3.5

Unit IV

7. (a) Draw the Gantt chart for the SSTF and FCFS scheduling policies and calculate the turnaround time, average turnaround time, waiting time, average waiting time, throughput and processor utilization for the following set of processes that arrive at a given arrival time shown in the table by applying SSTF and FCFS.

Process	Arrival	Processing	
	Time	Time (Milliseconds)	
P1	0	3	
P2	1	5	
P3	2	5	
P4	3	5	
P5	4	6	
P6	5	4	

(b) Explain the Non-continuous (indexing and chaining)disk space management methods.5

	8.	(a) Explain the following security models:			
			(i)	Mandatory Access Control	2.5
			(ii)	Rule Based Access Control	2.5
			(iii)	Discretionary-Access Control	2.5
		(b)	Justif	y the roles of the following with concern	to
			the ke	ernel I/O subsystem :	
			(i)	Scheduling	2.5
			(ii)	Caching	2.5
			(iii)	Spooling	2.5
				AC	
				· ·	
				0	
		A .	1		
				<i>*</i>	
A					
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
		7			_
) (